
Lazy Controller Synthesis using Three-valued Abstractions
for Safety and Reachability Specifications*

Omar Hussien and Paulo Tabuada

Abstract— The synthesis of correct-by-design control soft-
ware is a promising direction to address the well known dif-
ficulties in formally verifying complex cyber-physical systems.
Despite the promise of this approach, it is currently limited to
small systems since it typically requires the computation of a
finite-state abstraction whose size grows exponentially with the
number of continuous states. In this paper we present a new
way to tackle the lack of scalability of control software synthesis
by adopting a lazy controller synthesis approach. Instead of
synthesizing a controller using a precomputed abstraction of
the full system, the abstraction is computed lazily as needed
for safety and reachability specifications. We illustrate, through
different examples, how this lazy approach significantly reduces
the total time required for the synthesis of correct-by-design
controllers.

I. INTRODUCTION

As cyber-physical systems (CPS) become more complex,
the verification of CPS control software becomes extremely
challenging. One way to alleviate the need for verification
is to adopt a correct-by-design approach. By synthesizing
the control software along with a proof of correctness, the
correct-by-design approach eliminates, or greatly reduces,
the need for verification. A common correct-by-design ap-
proach is based on the computation of a finite-state abstrac-
tion of the control system. Given a specification expressed
in some formal language, a controller that enforces this
specification on the abstraction is first synthesized and then
refined to a controller enforcing the same specification on
the original system. Construction of abstractions for incre-
mentally input-to-state stable control systems was introduced
in [20], [23] and [22]. In [30] the authors showed how
to compute finite-state abstractions if incremental input-to-
state stability does not hold. A variety of software tools for
abstraction based correct-by-design controller synthesis have
been developed and include PESSOA [14], CoSyMa [16],
TuLiP [29], and SCOTS [27]. However, the computation
of abstractions scales exponentially with the number of
variables in the differential equation model of the system
to be controlled. Hence, it becomes challenging to compute
abstractions for large systems.

One way to mitigate this problem is to compute ab-
stractions compositionally. Recent efforts toward computing

*This work was supported in part by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA and by the NSF CPS Awards 1239085 and 1645824.

O. Hussien and P. Tabuada are with the Department of Electrical
Engineering, University of California Los Angeles, Los Angeles, CA,
ohussien@ucla.edu, tabuada@ee.ucla.edu.

abstractions of control systems compositionally are based
on exploiting the structure of the control system: see [18]
for results exploiting linearity, see [10] for results exploit-
ing monotonicity, see [21] and [11] for results exploiting
the discrete-time nature, see [17] for results exploiting the
switched nature, and [13] for results exploiting the stochas-
tic nature of control systems. Moreover, nonlinear control
systems that can be decomposed into smaller subsystems
with different types of interconnections were addressed in
[24], [15], [12], [6], [9]. Results that are based on computing
an initial coarse abstraction which is gradually refined on-
demand can be found in [7] and [4]. The authors in [7]
extended the method of counterexample-guided refinement
(CEGAR) [3] from verification to controller synthesis. In
[4] a specification-guided approach was introduced using
three-valued abstraction refinement where under- and over-
approximations of the winning region are computed and
denoted by must-win and may-win states, respectively. If
the controller synthesized for the abstraction that under-
approximates the concrete system is not able to enforce
the specification from the initial states, refinement is done
by splitting the may-win states. Similarly, multi-layered
abstraction approaches where introduced in [8] and [5]. In
[8], the authors simultaneously maintain several abstractions
with different precisions. Controller synthesis starts from the
coarser abstraction and moves on to finer precision if needed
depending on the given control problem. In [5], the authors
present a multi-layered approach for incrementally stable
switched systems by allowing transitions to have different
durations. The coarser abstraction is used for transitions
with longer duration whereas a finer abstraction is used for
transitions with shorter duration. Computation of abstractions
on the fly was presented in [26] for discrete-time nonlinear
systems to synthesize controllers that drive the system into
a desired set while minimizing a given cost. The authors in
[19] presented an approach to integrate controller synthesis
with the computation of the abstraction for nonlinear control
systems that are incrementally input-to-state stable [2].

In this paper, we present a novel, and orthogonal to
previous work, way to improve the scalability of abstraction-
based synthesis by adopting a lazy approach. Instead of
synthesizing a controller using a precomputed abstraction
of the full system, we lazily compute the fragment of
the abstraction that is required for controller synthesis. In
Sections III and IV, we discuss how to synthesize a controller
for safety and reachability specifications, respectively, by

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 3567

lazily computing the abstraction as needed. Similarly to the
approach in [4], we use a three-valued abstraction refinement
approach. However, may-states in our approach denote the
states for which the set of successors has not yet been
computed for all inputs. Instead of computing a coarse
abstraction and gradually refining it by splitting may-states,
we refine the transitions stemming from may-states. This is
accomplished by computing new transitions from a may-
state that may make it a must-state if an input is found
for which all its successors land on the desired set. Hence,
our approach refines transitions while the approach in [4]
and [8] refines states. We present lazy controller synthesis
algorithms for safety and reachability specifications and we
illustrate through different examples how the lazy approach is
significantly faster as compared to controller synthesis using
a precomputed abstraction.

The remainder of the paper is organized as follows.
Section II introduces notation and the definitions of control
systems and abstractions that we consider in this paper. Our
proposed algorithms for safety and reachability specifications
appear in Section III and Section IV, respectively. We
illustrate the benefits of our approach through examples in
Section V. Conclusions follow in Section VI.

II. CONTROL SYSTEMS AND ABSTRACTIONS

A. Notation

We use N, Z, R, R+, R+
0 to denote the set of natural

integer, real, positive and nonnegative real numbers. The
discretization of S ⊂ Rn is defined by:

[S]α = {s ∈ S|si = kiα, ki ∈ Z, i = 1, · · · , n},

where α ∈ R+ is the discretization parameter. Given a
measurable function f : R+

0→Rn, we denote the (essential)
supremum (ess) supt∈R+

0
‖f(t)‖ by ‖f‖∞. We use ∧, ∨, and

¬ to denote the logical conjunction, disjunction, and negation
respectively. The temporal operators always and eventually
are denoted by � and ♦, respectively. Given sets A and B,
we use A−B to denote the set of all elements in A and not in
B. We use the notation x :∈ X to represent the assignment
to x of an element of X .

B. Control Systems

In this paper we work with continuous time control
systems defined as follows.

Definition 2.1: A control system Σ = (Rn, U,U , f) con-
sists of:

• the state space Rn;
• the input set U ⊆ Rm;
• the admissible input curves U , a subset of all the

piecewise continuous functions of time from intervals
of the form]a, b[⊂ R to U with a < 0 < b;

• the locally Lipschitz continuous map f : Rn × U→Rn
defining the dynamics of the system.

C. Abstraction

We compute an abstraction of a given control system by
discretizing the states, the inputs, and time.

Definition 2.2: Given the control system
Σ = (Rn, U,U , f) and the discretization parameters
(τ, η, µ), where τ ∈ R+ is the sampling time, η ∈ R+

is the state space discretization, and µ ∈ R+ is the input
discretization, the abstraction S (Σ) of Σ is the triple
(X,U, T) consisting of:
• X = [Rn]η;
• U = [Rm]µ;
• T : X × U ×X → {0, 1/2, 1},

where the map T describes the transition relation in the
abstraction. Note that the set of states X and the set of
inputs U in Def. 2.2 have infinitely many elements. However,
states and inputs of most CPS hold physical meaning and can
not exceed certain values under normal operation, i.e., they
are always restricted to compact sets. Hence, the abstraction
presented in Def. 2.2 becomes finite once we replace Rn and
Rm with a compact set of states and inputs, respectively.

The proposed lazy algorithms for safety and reachability
specifications in Sections III and IV start with an empty
transition relation, i.e., an abstraction without transitions,
and compute the transitions lazily as needed for controller
synthesis. For the purpose of analyzing the algorithms,
we assume that all the relevant states have already been
computed. In practice, however, we store the abstractions on
efficient data structures, e.g., Binary Decision Diagrams, and
states for which no transitions have been computed are not
stored in memory. The existence of a transition from a state
x to another state x′ using an input u, is recorded by having
T map (x, u, x′) to 1. The absence of a transition from a
state x to another state x′ using an input u, is recorded by
having T map (x, u, x′) to 0. In addition to these two cases,
we use 1/2 to record that transitions from state x under input
u have not yet been computed. This means that every state
x′ is a potential successor of x under u and is recorded as
T (x, u, x′) = 1/2 for every x′.
We denote the set of u-successors of a state x by Postu (x)
and we assume that Postu (x) is always nonempty. Note that,
if an abstraction is precomputed, then T (x, u, x′) ∈ {0, 1}
for all x ∈ X , u ∈ U and x′ ∈ X .

III. CONTROLLER SYNTHESIS

FOR SAFETY SPECIFICATIONS

In this section we present two algorithms to synthesize
controller for safety specifications, i.e., always stay in a
desired set for all time. The first algorithm is classical
and assumes the existence of an abstraction. The second
algorithm is the first contribution of this paper and rather
than requiring an existing abstraction, it lazily computes
the fragment of the abstraction that is needed for controller
synthesis. We show that the lazy algorithm terminates and
upon termination returns the largest set of states for which

3568

there exists a control input that enforces the state to stay in
K. This set is also known as the largest controlled invariant
set in K. Once this set is computed, controller synthesis is
straightforward as it amounts to choosing an input that forces
the system to remain in the controlled invariant set. Existence
of such input is guaranteed by notion of controlled invariant
set. Accordingly, we present algorithms that compute this
set.

A. Classical Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given
an “always K” specification for a set K ⊆ X , denoted by
�K, Algorithm 1 returns the set of states for which there
exists a control input that enforces the specification, denoted
by J�KK. The computation of J�KK makes use of the set
PreT(Q) defined by:

PreT(Q) = {x ∈ X|∃u,∀x′ ∈ X,T (x, u, x′) = 1⇒ x′ ∈ Q}.

In Algorithm 1, the set Q is updated until a fixed-point is
reached. Upon termination, the set Q identifies the set J�KK.

B. Lazy Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given
the specification �K, we propose Algorithm 2 to lazily
compute J�KK. Algorithm 2 starts with a transition relation
T ′ for which no transition has yet been computed, i.e.,
T ′(x, u, x′) = 1/2 for all x ∈ X , u ∈ U and x′ ∈ X .
Given that T is a precomputed transition relation for S (Σ),
we define the sets PreT(V) and PreT(V) to be an under-
and over-approximation of the set PreT(V), respectively, as
follows:

PreT(V) =PreT′(V),

PreT(V) ={x ∈ X|∃u ∈ U,∀x′ ∈ X,T ′(x, u, x′) = 1/2}
∪ PreT′(V),

where T ′ is any over-approximation of the transition relation
T . By an over-approximation of T we mean any transition
relation T ′ for which T (x, u, x′) = 1⇒ T ′(x, u, x′) ≥ 1/2.
PreT is an under-approximation of PreT since every transi-
tion mapped by T ′ to 1 is also mapped by T to 1 although
there might be transitions mapped to 1 by T that are mapped
to 1/2 by T ′. Conversely, PreT is an over-approximation of
PreT since every transition mapped by T to 1 is mapped by
T ′ to 1 or 1/2 and all such transitions are used in computing
PreT.

Algorithm 1 Computation of J�KK.

1: function STAY(T , K)
2: Q← K

3: repeat
4: Q′ ← PreT(Q)

5: Q← Q′ ∩Q
6: until fixed point on Q is reached
7: return Q

Algorithm 2 Lazy Computation of J�KK.

1: function LAZYSTAY(T ′, K)
2: V ← K

3: repeat
4: V ← PreT(V)

5: V ← PreT(V)

6: V ← V ∩ V
7: T ′ ← RefineN (T ′, V − V)

8: until fixed point on V is reached and V = V

9: return V

We define the RefineN function in Algorithm 3, where N
denotes the number of states that will be refined. The proof of
correctness and termination of Algorithm 2 does not depend
on the value of N . However, the choice of N can affect the
performance significantly. We return to this point in Section
V in the context of different examples.

Now we show that Algorithm 2 always terminates and
upon termination it returns the largest controlled invariant set
in K. We use Lemma 3.1 to show termination and Lemma
3.2 to show that Algorithm 2 computes the largest controlled
invariant set in K, i.e., the set J�KK.

Lemma 3.1: If the set of states X and the set of inputs U
are finite, Algorithm 2 terminates in finite time.

Lemma 3.2: If Algorithms 1 and 2 run on the same input
and the set of states X and the set of inputs U are finite, we
have Q = V upon termination of each Algorithm.
The next result summarizes the consequences of Lemmas 3.1
and 3.2.

Theorem 3.3: Given that the set of states X and the set
of inputs U are finite, Algorithm 2 terminates in finite time
and upon termination returns the largest controlled invariant
subset of K.

Algorithm 3 Abstraction Refinement.

1: function RefineN (T ′,V)
2: for i := 1, · · · , N do
3: x :∈ V
4: V ← V \ {x}
5: u :∈ {u ∈ U | ∀x′ ∈ X, T ′(x, u, x′) = 1/2}
6: for each x′ ∈ X do
7: T ′(x, u, x′)← 1 if x′ ∈ Postu(x)

8: T ′(x, u, x′)← 0 if x′ /∈ Postu(x)

9: return T ′

IV. CONTROLLER SYNTHESIS

FOR REACHABILITY SPECIFICATIONS

In this section we present two algorithms to synthesize
a controller for reachability specifications, i.e., eventually
reach a desired set. The first algorithm is classical and uses a
precomputed abstraction. The second algorithm is the second

3569

contribution of this paper which lazily computes fragment of
the abstraction on the fly as needed for controller synthesis.

A. Classical Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given
an “eventually K” specification, denoted by ♦K, Algorithm
4 returns J♦KK.

B. Lazy Algorithm

Let S (Σ) be an abstraction of a control system Σ
for which no transition has yet been computed, i.e.,
T ′(x, u, x′) = 1/2 for all x ∈ X , u ∈ U and x′ ∈ X . Given
the specification ♦K, we propose Algorithm 5 to compute
J♦KK. Note that we use the same RefineN function defined
by Algorithm 3.

Since the reachability problem is dual to the safety
problem [28], the proof of termination and correctness of
Algorithm 5 follows similarly to Lemmas 3.1 and 3.2, respec-
tively. Note that in Algorithm 2, V is an over-approximation
of Q in Algorithm 1, whereas in Algorithm 5, V is an under-
approximation of Q in Algorithm 4.

Theorem 4.1: Algorithm 5 terminates in finite time and
upon termination returns the largest reachable set towards
K.

Algorithm 4 Computation of J♦KK.

1: function REACH(T , K)
2: Q← K

3: repeat
4: Q′ ← PreT(Q)

5: Q← Q′ ∪Q
6: until fixed point on Q is reached
7: return Q

Algorithm 5 Lazy Computation of J♦KK.

1: function LAZYREACH(T ′, K)
2: V ← K

3: repeat
4: V ← PreT(V)

5: V ← PreT(V)

6: V ← V ∪ V
7: T ′ ← RefineN (T ′, V − V)

8: until fixed point on V is reached and V = V

9: return V

V. EXPERIMENTAL RESULTS

In this section we illustrate our results on two different
examples. We synthesize controllers for each example using
the lazy algorithms and compare them with controllers that
we obtain using PESSOA [14] and SCOTS [27]. In the first
example, we compare our results using a unicycle system for
safety and reachability specifications. In the second example
we synthesize a controller for a kneed biped robot which

appeared in [1] for safety specifications. The lazy algorithms
were implemented in C++ and all the computations were
done on a 3.4 GHz iMac with 32GB of RAM.

A. Unicycle navigation example

Consider the unicycle vehicle, which can be modeled by:

ẋ = v cos(θ) (1)

ẏ = v sin(θ) (2)

θ̇ = ω, (3)

where (x, y) denotes the position of the vehicle, θ denotes
its orientation, and the control inputs v, ω denote the linear
and angular velocities, respectively. We used Algorithms 2
and 5 to synthesize a controller that should always avoid
the red obstacles and eventually reach a desired green area
shown in Fig. 1. This was performed in 2 steps. In the
first step we synthesized a controller that avoids collisions
with the obstacles using Alg. 2. In the second step we
used the controlled invariant set computed in step 1 as the
domain over which we solved the reachability problem for
the green area using Alg. 5. The state space and input space
discretization parameters used were η = 0.1 and µ = 0.1,
respectively, whereas we used τ = 0.5 for the sampling
time. Fig. 1 shows the closed loop simulation results for
the unicycle model using the synthesized controller for
“eventually”, reach the desired area, while “always”, avoid
the obstacles, specifications. We also computed abstractions
of this model, with the same parameters, and synthesized a
controller for the same specifications, using the MATLAB
toolbox PESSOA [14] as well as SCOTS [27]. Tables I and
II list a comparison of PESSOA, SCOTS and our lazy safety
and reachability algorithms, respectively, using different val-
ues of N , where N determines how many states are refined
each time the RefineN function is executed, tabs and tsyn
are the time to compute the abstraction and synthesize the
controller, respectively, in seconds. We observe in Tab. I that
when N = 2000, we can achieve a speedup of up to 4 and
85 times compared to SCOTS and PESSOA, respectively.
In Tab. II, when N = 1000, we can achieve a speedup of
up to 3 and 63 times compared to SCOTS and PESSOA,
respectively. Also, we observe that the choice of N greatly
affects the performance of the lazy algorithms. Note that
tabs has the same value for Algorithm 1 and Algorithm
4 for PESSOA, and SCOTS, because they synthesize a
controller by computing the same abstraction for different
specifications.

B. Biped robot example

Consider the kneed biped robot model, shown in Fig. 2,
and given by:

M(θ)θ̈ + C(θ̇, θ)θ̇ +G(θ) = Bu, (4)

where θ = (θ1, θ2, θ3) ∈ S3, M(θ) is the inertia matrix,
C(θ̇, θ) is the Coriolis matrix, G(θ) is the gravity vector,
and the matrix B maps the torques vector u to generalized

3570

N tabs tsyn

Algorithm 1 (PESSOA) - 12105 60
Algorithm 1 (SCOTS) - 530 20

Algorithm 2

100 - 505
200 - 380
500 - 290
1000 - 230
2000 - 140
5000 - 200

TABLE I: Comparison of Algorithm 1 in PESSOA and SCOTS and
Algorithm 2.

N tabs tsyn

Algorithm 4 (PESSOA) - 12105 40
Algorithm 4 (SCOTS) - 530 50

Algorithm 5

100 - 540
200 - 400
500 - 330
1000 - 190
2000 - 250
5000 - 260

TABLE II: Comparison of Algorithm 4 in PESSOA and SCOTS and
Algorithm 5.

forces. Note that a kneed biped is a hybrid system with two
phases: 1) The unlocked knee phase starts at the beginning of
a new step where the knee can bend and the system dynamics
is modeled by (4) and lasts until the swing leg goes forward
and straightens the knee; 2) The locked knee phase starts as
soon as the knee straightens out and lasts until the swing leg
hits the ground. The locked knee dynamics is modeled using
different configurations of masses with the same dynamics of
the unlocked knee phase. Switching between the two phases
is governed by different guards based on the angles of the
robot. Reset maps are applied to angles and angular velocities
whenever one of the guards is reached. For further details on
the model, we refer interested readers to [1].

We synthesized a controller that forces the robot to always
move forward, which is captured by having θ̇1 always greater
than zero, and avoid obstacles on the ground. The state space
and input space discretization parameters used were η = 0.01
and µ = 0.01, respectively, whereas we used τ = 0.01 for

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 1: Closed loop simulation result using the controller synthesized with
lazy Algorithms 2 and 5.

θ2

θ3
θ1

Fig. 2: A kneed biped over horizontal ground.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

Fig. 3: Closed-loop simulation results, showing the evolution of q̇1 over
time, using the controller synthesized with Algorithm 2.

the sampling time. Controller synthesis using Algorithm 2
took 10 hours, while PESSOA crashed after running for 5
consecutive days. It is worth mentioning that we were not
able to try SCOTS on this example as it uses the notion of
growth bound [25] to compute the reachable sets from each
state x using input u, denoted by Postu (x) in RefineN ,
that does not handle the presence of guard and reset maps
for hybrid systems as the kneed biped. Fig. 3 shows the
closed-loop simulation results whereas Fig. 4 and 5 show
tiles of two steps and one of the resulting walking gaits
using the controller synthesized for the kneed biped model,
respectively.

VI. CONCLUSION

In this paper we presented a lazy approach for controller
synthesis. Instead of using a precomputed abstraction, we
lazily compute the fragments of the abstraction that are
needed to synthesize a controller. We presented two algo-
rithms for safety and reachability specifications which are
guaranteed to terminate in finite time and upon termination
they return the same output as the classical algorithms. Using
the unicycle example, we illustrated that we can achieve
a speedup of up to 4 and 85 times for safety and 3 and
63 for reachability specifications compared to SCOTS and
PESSOA, respectively. Moreover, we illustrated the novel
lazy algorithm, for safety specifications, on a kneed biped
robot example by synthesizing a controller that enforces the
biped to move forward and avoid obstacles on the ground.
As a future work, we intend to investigate the use of system-
based heuristics to select the number of the states to be
refined in the RefineN function, as well as the input used for
the refinement to achieve better performance. In addition, we
will be investigating extensions of the proposed algorithms
to recurrence and persistency specifications.

3571

Fig. 4: Tiles of two steps by the robot generated using the synthesized controller. Each row represents the tiles of a single step.

Fig. 5: A walking gait generated using the synthesized controller. The stance
leg is shown as a solid line, whereas the swing leg is shown as a dashed
line.

REFERENCES

[1] A. D. Ames. Characterizing knee-bounce in bipedal robotic walking:
A zeno behavior approach. In Proceedings of the 14th international
conference on Hybrid systems: computation and control, pages 163–
172. ACM, 2011.

[2] D. Angeli. A lyapunov approach to incremental stability properties.
IEEE Transactions on Automatic Control, 47(3):410–421, 2002.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer aided verification, pages
154–169. Springer, 2000.

[4] L. De Alfaro and P. Roy. Solving games via three-valued abstraction
refinement. In CONCUR 2007–Concurrency Theory, pages 74–89.
Springer, 2007.

[5] A. Girard, G. Gössler, and S. Mouelhi. Safety controller synthesis
for incrementally stable switched systems using multiscale symbolic
models. IEEE Transactions on Automatic Control, 61(6):1537–1549,
2016.

[6] F. Gruber, E. S. Kim, and M. Arcak. Sparsity-sensitive finite abstrac-
tion. arXiv preprint arXiv:1704.03951, 2017.

[7] T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided
control. Springer, 2003.

[8] K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck. Multi-layered
abstraction-based controller synthesis for continuous-time systems. In
Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control. ACM, 2018.

[9] O. Hussien, A. Ames, and P. Tabuada. Abstracting partially feedback
linearizable systems compositionally. IEEE Control Systems Letters,
1(2):227–232, 2017.

[10] E. S. Kim, M. Arcak, and S. A. Seshia. Symbolic control design for
monotone systems with directed specifications. Automatica, 83:10–19,
2017.

[11] E. S. Kim, M. Arcak, and M. Zamani. Constructing control system
abstractions from modular components. In Proceedings of the 21st In-
ternational Conference on Hybrid Systems: Computation and Control.
ACM, 2018.

[12] R. Majumdar, K. Mallik, and A.-K. Schmuck. Compositional synthesis
of finite state abstractions. arXiv preprint arXiv:1612.08515, 2016.

[13] K. Mallik, S. E. Z. Soudjani, A.-K. Schmuck, and R. Majumdar.
Compositional construction of finite state abstractions for stochastic
control systems. arXiv preprint arXiv:1709.09546, 2017.

[14] M. Mazo Jr, A. Davitian, and P. Tabuada. Pessoa: A tool for embedded
controller synthesis. In Computer Aided Verification, pages 566–569.
Springer, 2010.

[15] P.-J. Meyer, A. Girard, and E. Witrant. Safety control with perfor-
mance guarantees of cooperative systems using compositional abstrac-
tions. IFAC-PapersOnLine, 48(27):317–322, 2015.

[16] S. Mouelhi, A. Girard, and G. Gössler. Cosyma: a tool for controller
synthesis using multi-scale abstractions. In Proceedings of the 16th
international conference on Hybrid systems: computation and control,
pages 83–88. ACM, 2013.

[17] P. Nilsson and N. Ozay. Control synthesis for large collections
of systems with mode-counting constraints. In Proceedings of the
19th International Conference on Hybrid Systems: Computation and
Control, pages 205–214. ACM, 2016.

[18] P. Nilsson and N. Ozay. Synthesis of separable controlled invariant
sets for modular local control design. In American Control Conference
(ACC), 2016, pages 5656–5663. IEEE, 2016.

[19] G. Pola, A. Borri, and M. D. Di Benedetto. Integrated design of
symbolic controllers for nonlinear systems. IEEE Transactions on
Automatic Control, 57(2):534–539, 2012.

[20] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508–2516,
2008.

[21] G. Pola, P. Pepe, and M. D. Di Benedetto. Symbolic models for
networks of control systems. IEEE Transactions on Automatic Control,
61(11):3663–3668, 2016.

[22] G. Pola, P. Pepe, M. D. Di Benedetto, and P. Tabuada. Symbolic mod-
els for nonlinear time-delay systems using approximate bisimulations.
Systems & Control Letters, 59(6):365–373, 2010.

[23] G. Pola and P. Tabuada. Symbolic models for nonlinear control
systems: Alternating approximate bisimulations. SIAM Journal on
Control and Optimization, 48(2):719–733, 2009.

[24] G. Reißig. Abstraction based solution of complex attainability prob-
lems for decomposable continuous plants. In Decision and Control
(CDC), 2010 49th IEEE Conference on, pages 5911–5917. IEEE,
2010.

[25] G. Reissig, A. Weber, and M. Rungger. Feedback refinement relations
for the synthesis of symbolic controllers. IEEE Transactions on
Automatic Control, 62(4):1781–1796, 2017.

[26] M. Rungger and O. Stursberg. On-the-fly model abstraction for
controller synthesis. In American Control Conference (ACC), 2012,
pages 2645–2650. IEEE, 2012.

[27] M. Rungger and M. Zamani. Scots: A tool for the synthesis of sym-
bolic controllers. In Proceedings of the 19th International Conference
on Hybrid Systems: Computation and Control. ACM, 2016.

[28] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

[29] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray.
Tulip: a software toolbox for receding horizon temporal logic plan-
ning. In Proceedings of the 14th international conference on Hybrid
systems: computation and control, pages 313–314. ACM, 2011.

[30] M. Zamani, G. Pola, M. Mazo, and P. Tabuada. Symbolic models for
nonlinear control systems without stability assumptions. Automatic
Control, IEEE Transactions on, 57(7):1804–1809, 2012.

3572

